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COMMENT 

Mean field-finite size scaling transformations for the 2, spin 
model 

JosC A Riera 
Instituto de Fisica de Rosario (CONICET-UNR), 2000 Rosario, Argentina 

Received 3 April 1984 

Abstract. The recursion relations which result from the scaling law for the magnetisations 
of two finite systems surrounded by the mean field are obtained for the Z, spin model. 
Then, following a renormalisation group strategy, the phase diagrams and critical exponents 
are determined and studied. This method leads to a substantial improvement, at least for 
determining phase diagram<, with respect to mean field approximation or other renormalisa- 
tion group techniques. 

In this paper is applied the method proposed by Indekeu, Maritan and Stella (1982), 
henceforth referred to as IMS, to a two coupling constants model: the Z4 spin model, 
in two and three dimensions. This method has been applied to random systems (Droz 
et al 1982) and to the triangular Ising ferromagnet (Slotte 1983). 

As in finite size scaling theory (Nightingale 1976), the IMS method is based on the 
comparison of systems of different sizes. For both systems, the average magnetisation 
can be computed in the presence of symmetry breaking boundary conditions which, 
in a mean field (MF)  sense, simulate the effect of an infinite lattice. The imposition of 
the standard scaling law between the magnetisations which arises in the real space 
renormalisation group ( RSRG) transformations (Niemeijer and van Leeuwen 1976) 
leads after linearisation to a recursion relation for the parameters of the model. 

By making use of these recursions as the RG theory prescribes, the phase diagrams 
of the model and its critical indices can be obtained. The formal connection between 
the IMS approach and more standard RSRG methods has been indicated in the original 
paper and we shall not repeat it here. The application of the IMS method to the well 
studied two-dimensional Z4 spin model is performed in order to check its capabilities. 
Then it is used for determining the phase diagram of the less known three-dimensional 
Z4 spin model. 

The most general action with a Z4 global symmetry, in the presence of external 
fields, is 

where the spin variables U,  = +1, - 1 ,  +i, -i, are placed in the sites of a d-dimensional 
hypercubic lattice. ( i ,  j )  indicates nearest neighbours. 

Following the process sketched above, two finite systems will be considered: a 
single spin and a square of two sites per side. In d = 3, this cluster is somewhat more 
isotropic than the one adopted by I M S  for the analysis of the Potts model. 
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In order to recover all the phases of the model, the original I M S  prescription has 
to be slightly generalised by introducing a two-component order parameter (f; g )  where 
f = ( a , )  and g=(a:) .  The corresponding parameters of the 2d surrounding spins of 
the single spin are fixed to the mean field values U’ and U’. Similarly, each of the four 
spins of the cluster has 2(4) boundary spins for d = 2(3), that are fixed to different M F  

values U and U. The next step is to compute the order parameters for the single spin 
and for the cluster. Then the fundamental equations of the method, obtained by 
connecting both order parameters through the usual finite size scaling relation, are 

f ’ ( J { ,  JZ ;  h i ,  h i ;  U‘, U‘) = 2-”f(J,, J 2 ;  h , ,  h,; U, U), 

g’(J‘,! J ; ;  h i ,  h;;  U’, U’) =2-*“g(J, ,  J,; h , ,  h,; U, U), 
(2) 

where a is the spin dimension (a  = f(2 - d - 7 )  and 7 is the pair correlation function 
critical index). Now, recall that the two-dimensional Z4 spin model is equivalent to 
the Ashkin-Teller model which consists of two coupled Ising models. This fact justifies 
the possibility of working in the neighbourhood of U, U’, U and U‘ equal to zero. The 
whole procedure is extended without further justification to the three-dimensional 
case. Then, by linearising the fundamental equations (2) in U, U’, U and U’, and assuming 
that 

4 (3) 2)) = 2-02: = 2-20 

after taking h ,  = h2 = 0, the following recursion relations are obtained: 

where 

S,=e4’2(e4’, +6+e-4’~) + 8  e-4’2+ 12(e’i +e-’))’ 

and the constant k takes the value 2 in two dimensions and in three dimensions. 
Naturally, the direct identification of the values ( U ’ ,  U’) with the functions (f’, g’) would 
lead to the usual M F  results. Similarly, by equating (U, U )  with (f; h )  one would obtain 
an improved M F  approximation which takes into account fluctuations inside the clusters. 

The recursion relations can be rewritten in terms of the variables KI  = exp( -25, - 5,) 
and K z  = exp(-2JI). In the ( K , ,  K 2 )  space this transformation possesses the known 
(Rujin et al 1981, Creutz and Roberts 1983) seven fixed points of which (see figures 
1 and 2) SI ,  S 2  and S3 are stable, 01, 0, and 03, the Ising-like points, are stable in 
one direction and the triple point P, on the Potts line K ,  = K 2 ,  is unstable. The flow 
of trajectories in the ( K , ,  K,) space shows the presence of three phases characterised 
by (I):  U = U = 0, (11): U # 0, U # 0, (111): 2: = 0, U # 0. In general, this MF-finite size 
scaling RG method reproduces the main qualitative features but it loses the self duality 
of the phase diagram. 

The estimation of the critical points is much better than that of other methods of 
similar complexity, for example, the RSRG used by Knops (1975) in d = 2 or the 
Migdal-Kadanoff RG with rescaling factor A = 2. In particular, in the two-dimensional 
case, the triple point takes the exact value. In d = 3, in spite of the anisotropy of the 
adopted cluster, the Ising-like and the triple points are determined within 5 %  with 
respect to the accepted values. This improvement in the determination of the Ising-like 
points with the dimension is a consequence of the underlying MF hypothesis that leads 
to the recursion relations (4). 
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12065 Figure 1. Phase diagram of the two-dimensional Z, spin model for J2 > 0. 

The critical exponents can be computed from the eigenvalues of the matrix 
( a J , / a J , ) ( J * )  obtained by linearising the transformation (4) around the fixed points 
J * .  The largest eigenvalue, for each fixed point, can be written as A I  = 2 y ~  where y ,  is 
the thermal exponent related to the specific heat critical index a = 2 - d / y , .  
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Figure 2. Phase diagram of the three-dimensional 2, spin 
model for J 2 >  0. The cross indicates the critical line of the 
four-state Potts model ( K ,  = K, line). 

Figure 3. Critical exponents y ,  (full line) and 
yH (broken line) against J2 along the line PO,. 
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In two dimensions, for the Ising-like fixed points, the value y ,  = 0.693 results, which 
yields a qualitatively wrong, negative a. 

The same fact occurs for the triple point where the value y ,  = 0.836 is obtained. 
Its eigenvector is, as expected, in the direction of the Potts line. 

The exponent yH relative to the external field h ,  can be computed through the 
hyperscaling law yH = a - d. For all the non-trivial fixed points, in d = 2, it results that 
y,= 1.5. 

By plotting the function 

B = ( G: + G$)- ”’ 
where Gi = ( K : ( K , ,  K 2 ) - K i ) ,  it can be seen that the line PO, behaves as a line of 
fixed points. Then one can calculate the exponents y ,  and yH along this line. The 
results are displayed in figure 3 .  

The calculation of the critical exponents in d = 3 has not been performed owing 
to the anisotropy of the chosen cluster. The computations for a cube or clusters of 
bigger size involves great difficulties that, for 2, variables, become almost prohibitive. 
Perhaps these difficulties can be overcome with the help of, for example, Monte Carlo 
techniques. Then it would be possible to test the convergence of the method for 
increasing cluster sizes. 
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